9/14/2020 Phase Transitions

Phase Transitions

Vaporization and Condensation

Condensation is the phase transition from gas to liquid. When ther rate of condensation is equal to the rate of **vaporization**(liquid to gas), the system reaches a **Dynamic equilibrium** in which the amount of liquid and gas does not change, but the molecules are continuously exchanged between phases. **Vapor pressure** is the pressure exerted on the liquid by the vapor above.

Boiling Points

The temperature at which the vapor pressure increases enough to match the atmospheric pressure is the **Boiling Point**.

Clausius-Clapeyron Equation

$$P = A e^{-\Delta H_{vap}/RT}$$

The CCE can be linearized in the following form.

$$ln(P) = rac{-\Delta H_{vap}}{RT} + ln(A)$$

For a change of temperature, we can combine the 2 linear Clausius equations at each temperature, setting each equal to ln(A), and then setting each expression equal to each other, such that;

$$ln(rac{P1}{P2}) = rac{\Delta H_{vap}}{R}(rac{1}{T1} - rac{1}{T2})$$

Enthalpy of Vaporization

Vaporization is an endothermic process. Condensation is exothermic, it is the negative of vaporization

Melting and Freezing

Melting is the phase transition from solid to liquid, and **Freezing** is the opposite. The enthalpy of **fusion** is that of melting.

Sublimation and Deposition

Sublimation is the phase transition from solid to gas. **Deposition** is the opposite.

Heating and Cooling Curves

Recall
$$q=mc\Delta T$$

9/14/2020 Phase Transitions

